
EECS C145B / BioE C165: Image Processing and
Reconstruction Tomography

Lecture 11 (revision II)

Jonathan S. Maltz

jon@eecs.berkeley.edu

http://muti.lbl.gov/145b

510-486-6744

1

Topics to be covered

1. Introduction to iterative methods

2. Introduction to the algebraic reconstruction technique (ART)

(See tomographic reconstruction primer)

3. Modeling image statistics: The Gaussian distribution

4. The maximum likelihood (ML) principle

5. Relationship between Gaussian ML and least squares

6. Modeling image statistics: The Poisson process

7. Introduction to optimization

8. Solving ML problems using optimization algorithms

2

Reading

Assigned reading:

• Budinger, “A Primer on Reconstruction Algorithms”

(handout).

Optional reading

• Stirzaker, “Elementary Probability”, Cambridge University

Press (1994), pp. 290-293.

• Lawler, “Introduction to Stochastic Processes”, Chapman &

Hall (1995), pp. 52-56.

• “Numerical Recipes in C”. Press, Teukolsky, Vetterling and

Flannery, 2nd Edition (1995) pp. 656-666.

Advanced reading:

• Natterer, “The Mathematics of Computerized Tomography”,

John Wiley and Sons (1986), Chapter V.

3

Introduction to iterative algorithms

• The pseudoinverse method of tomographic image reconstruction is
too slow and requires too much memory for the solution of

even moderately sized problems. This is because it tries to solve all

the linear equations that relate the pixel values to the projection

measurements in one step.

• The analytical reconstruction methods we derived from the
projection slice theorem (PST) are currently the most popular

algorithms for reconstructing tomographic images.

• These algorithms are very fast and easy to implement.

• Unfortunately, within these algorithms it is not possible to
accurately model many of the real-world processes that degrade

the quality of images. These include:

4

Introduction to iterative algorithms

1. Photon scatter: In emission tomography, the interaction of an

emitted gamma photon with matter on its way out of the body

changes the energy and direction of that photon. Photons

generated at a source lying along one ray thus arrive at the detector

along another ray. This leads to errors in the projection data that

increase noise and blur in the reconstructed image.

2. Attenuation: In emission tomography, photons generated within

the body have to travel through attenuating matter before

these photons reach the detector. Thus, emitted photons that have

to travel further through high density material will have a lower

likelihood of arriving at the detector than photons emitted closer to

the detector. An attenuation map may be created using an x-ray

CT scan so that attenuation may be compensated for. However,

algorithms based on the projection theorem cannot utilize this

information.

5

Introduction to iterative algorithms

3. Photon statistics: We will see shortly that the PST-based

methods and the pseudoinverse method assume that each projection

bin is a realization of a Gaussian distribution with unit

variance. In reality, photon counts follow a Poisson distribution.

6

Photons are emitted from a radioactive source within a body. The lower

photon is scattered on its way out and appears to come from a source

along a different ray.

7

Modeling image statistics

• We will first investigate methods of modeling photon statistics.
Later in the course, we will discuss scatter and attenuation.

• We begin by modeling the number of photons detected in a single
projection bin as being distributed according to a Gaussian

distribution.

• We model the number of counts measured in the jth projection bin
of the ith angular projection as:

pij = λij + ε

where λij is the true number of counts, and ε is some noise that has

contaminated the measurement.

• We can model ε as a Gaussian random variable that has a mean of
zero, and a variance of σ2ε .

8

Modeling image statistics: Gaussian noise model

• The Gaussian probability density function (pdf) tells us the

probability that a certain value ε of the random variable (rv) E will

occur:

fE(ε) =
1√
2πσε

e
− 1

2σ2
ε
ε2

,

• The Gaussian (or any other) cumulative distribution function

(cdf) gives us the probability that the rv E is less than a given value

ε:

FE(ε) = P (ε ≤ E) =

∫ ε

−∞

fE(ω) dω

• We can also use the cdf to find the probability that E will fall
within a certain range:

P (ε1 < E ≤ ε2) =

∫ ε2

ε1

fE(ω) dω

9

Modeling image statistics: Gaussian noise model

• For example, plotted below are the Gaussian pdf and cdf for a
random variable E that has a mean of zero and variance of one.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Gaussian pdf with zero mean and unit variance

ε

f E
(ε

)

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
Gaussian cdf with zero mean and unit variance

ε

F
E
(ε

)

• Note that the total area under any pdf must be unity. As a

consequence, the final value of any cdf must be unity.

• Imagine a hat full of an infinite number of pieces of paper, each with
a value ε. The numbers of on the pieces of paper follow a Gaussian

distribution with zero mean and unit variance.

10

Modeling image statistics: Gaussian noise model

1. What value are you most likely to draw from the hat?

2. What is the probability that the value ε on a piece of paper you

have drawn falls within one standard deviation of the mean?

P (−1 < E ≤ 1) =

∫ 1

−1

fE(ω) dω

=

∫ 1

−∞

fE(ω) dω −
∫ −1

−∞

fE(ω) dω

= FE(1)− FE(−1)
= 0.8413− 0.1587 = 0.6827

So, 68% of the time we will draw a number within one standard

deviation of the mean.

3. How probable is it that you draw the most likely value?

11

Modeling image statistics: Gaussian noise model

4. What is the probability that the value ε on a piece of paper you

have drawn falls within two standard deviations of the mean?

P (−2 < E ≤ 2) =

∫ 2

−2

fE(ω) dω

=

∫ 2

−∞

fE(ω) dω −
∫ −2

−∞

fE(ω) dω

= FE(2)− FE(−2)
= 0.9772− 0.8413 = 0.9545

So, over 95% of the area under the Gaussian pdf lies within two

standard deviations of the mean.

5. Suppose we have two Gaussian rv’s D and E and both have the

same pdf and are independent. What is the probability that D ≤ 0
and E ≤ 0?

12

Modeling image statistics: Gaussian noise model

Well, we know that D has equal probability of being ≥ than zero and ≤
zero. Therefore:

P (D ≤ 0) = 0.5
Similarly

P (E ≤ 0) = 0.5.
But what are the chances that both are less than or equal to zero? We

have four possible scenarios:

D ≤ 0 and E ≤ 0
D ≤ 0 and E > 0

D > 0 and E ≤ 0
D > 0 and E > 0

Therefore, only one in four
(

1
2
× 1

2

)

times will both rvs be less than or

equal to zero.

13

Modeling image statistics: Gaussian noise model

In general, for two independent events A and B

P (A ∩B) = P (A)× P (B)

For N indepedent events A1 through AN ,

P (∩Ni=1Ai) =

N
∏

i=1

P (Ai)

This makes intuitive sense. The chance of two events occurring

simultaneously will always be less than or equal to the probability of just

one of the events occurring. All probabilities are in the interval [0, 1].

Multiplying a fraction by a fraction will always give a smaller fraction.

Example: When we throw a fair die, we have a chance of 1/6 of getting

a six. When we throw two dice, our chance of getting two sixes is much

less likely. In fact, it is 1/6× 1/6 = 1/36.

14

Modeling image statistics: Gaussian noise model

4. Returning to the subject of drawing ε’s out of the “hat”, what will we get

if we draw 500 numbers out of the hat and then plot a histogram of these

numbers?

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5
Normalized histogram: 500 samples of a normal distribution

ε

R
el

at
iv

e
fr

eq
ue

nc
y

We see that the histogram approximates the Gaussian pdf. The histogram

gives us the empirical probablility (or relative frequency) of the value of

E falling within the limits of each of the 50 histogram bins.

15

Modeling image statistics: Gaussian noise model

6. What will we get if we draw 50000 numbers out of a hat and plot a

histogram of these numbers?

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Normalized histogram: 50000 samples of a normal distribution

ε

R
el

at
iv

e
fr

eq
ue

nc
y

The approximation gets better as we pull more numbers out of the

hat. When we draw an infinite number of pieces of paper, our

histogram becomes the pdf. Relative frequency becomes

probability.

16

Modeling image statistics: Gaussian noise model

So, what does this have to do with imaging?

• Imagine that the number of photons that hit a detector in a
projection bins in a time ∆t is equivalent to pulling a number ε out

of a hat and adding it to an unknown “true measurement” λij . As

before:

fE(ε) =
1√
2πσε

e
− 1

2σ2
ε
ε2

,

and

pij = λij + ε

• For an entire set of projections, the probability of getting a certain
set of ε’s is the product of the probabilities of getting a certain ε for

a single bin:

fE(ε) =

I
∏

i=1

J
∏

j=1

fEij(εij)

17

Modeling image statistics: Gaussian noise model

• This expression represents the product of IJ pdfs. For independent
Gaussian distributions, this product is the joint Gaussian

distribution:

fE(ε) =
1

(2π)IJ/2
∏I
i=1

∏J
j=1 σij

e
− 1

2

∑I
i=1

∑J
j=1

1

σ2
ij

ε2ij

where σ2ij is the variance of εij .

• Subsitituting pij − λij for εij , we get:

fP|Λ(p,λ) =
1

(2π)IJ/2
∏I
i=1

∏J
j=1 σij

e
− 1

2

∑I
i=1

∑J
j=1

1

σ2
ij

(pij−λij)
2

Here, the vector λ contains the λij . This pdf gives us the

probability that our projection measurements p came from the

projections of our image λ = Fµ. In other words, it describes the

probability of the measurements p given the model’s prediction λ

(F is the discrete Radon transform matrix).

18

Modeling image statistics: Gaussian noise model

• We now construct an IJ × IJ diagonal matrix Σ that contains the

variances σ2ij on its diagonal. Then we can express this joint pdf

more compactly in vector form as:

fE(ε) =
1

(2π)IJ/2|Σ| 12
e−

1
2
εTΣ−1 ε

or

fP|Λ(p,λ) =
1

(2π)IJ/2|Σ| 12
e−

1
2
(p−λ)TΣ−1(p−λ)

or

fP| U (p,µ) =
1

(2π)IJ/2|Σ| 12
e−

1
2
(p−Fµ)TΣ−1(p−Fµ)

where | · | denotes the determinant.

19

Modeling image statistics: Gaussian noise model

• The exponent in the function fP| U (p,µ) is always negative, because:
1. The inverses of the variances σ2ij , which make up the diagonal of

Σ−1, are all non-negative.

2. The quadratic form (p− Fµ)TΣ−1(p− Fµ) is always

non-negative when Σ−1 has only non-negative elements.

• Since the exponent of the exponential factor in fP| U (p,µ) is always
non-positive, the maximum value of this factor is one. This occurs

when p = Fµ. This is the case when the projections of the image

defined by µ exactly match the projection measurements.

20

Maximum likelihood

• By inspection, we have just solved the Gaussian maximum

likelihood (ML) problem. We found the solution that maximizes

the probability of getting the measurements we obtained

(p), given the model we have assumed (p = Fµ).

• Generally, we can’t solve problems ML problems by inspection. We
normally solve them by minimizing the negative of the natural

log of the pdf describing the probability of getting the

measurements given the model. This expression is treated as a

function of the parameters µ alone. For the joint Gaussian

distribution, the negative log-likelihood function is:

`(µ) = − ln
[

1

(2π)IJ/2|Σ| 12

]

+
1

2
(p− Fµ)TΣ−1(p− Fµ)

21

Maximum likelihood: Gaussian distributions

• This can be expanded as:

`(µ) = − ln
[

1

(2π)IJ/2|Σ| 12

]

+
1

2
pTΣ−1p− 2pTΣ−1Fµ+

µ
TFTΣ−1Fµ

• To minimize this function, we take its derivative with respect to the
parameters µ and set this equal to zero:

d`(µ)

dµ
=
1

2

[

− 2FTΣ−1p+ 2FTΣ−1Fµ
]

= 0

• Solving for µ gives:

µ =
(

FTΣ−1F
)−1

FTΣ−1p

22

Maximum likelihood: Gaussian distributions

• Note that when we assign unit variance to each of the µ, Σ becomes
the identity matrix and:

µ = µLS =
(

FTF
)−1

FTp = F+p

This is the pseudoinverse we derived earlier by minimizing the sum

of squared residuals.

• Viewed from the standpoint of statistical parameter estimation, the
pseudoinverse finds that solution that maximizes the likelihood of

the data given the model assuming that the data come from a

Gaussian process where each datum is an independent rv

having unit variance.

23

Maximum likelihood: Gaussian distributions

• Since we know that the emission of photons from the nuclei of atoms
is better modeled as an independent Poisson process, the Gaussian

statistical model is not optimal.

• The weighted least squares (WLS) formulation:

µWLS =
(

FTΣ−1F
)−1

FTΣ−1p

is more general, and better approximates reality, since we can

specify the variance of each data point independently. Consequently,

measurements in which we have more confidence are more highly

weighted in the cost function than those in which we have lower

confidence.

• In WLS, we minimize the sum of the squares of the weighted

residuals: (compare to the cost function in Lecture 8)

C =
M
∑

m=1

r2m =
M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2

/σ2m

24

Weighted least squares line fitting example
Suppose we obtain some physical measurements along with the calculated

uncertainties of these measurements (standard deviations). Instead of weighting the

residuals of each point equally, we weight each by the inverse of the variance of each:

0 2 4 6 8
−5

0

5

10

15

20

25
Comparative example of LS and WLS line fitting

x

y

Measured data ± std. dev
Unweighted LS fit
Weighted LS fit

We see that WLS “pulls” the line towards the measurements that have lower

variance. This makes much more sense than assuming all measurements have the

same variance. Low variance points “pull” the line with stronger “rubber bands”.

25

The Poisson process

• We now investigate the statistical modeling of radioactive decay in
more detail so we can choose a maximum likelihood approach that

better matches physical reality.

• A nucleus of an atom decays, releasing a photon, independently of
what is going on in other nuclei. As a result, knowing the time at

which the last photon was emitted from a material tells us

nothing about when the next photon will be emitted.

• If we assume that the average number of photons emitted during
a time interval is constant, and if we assume that photons are

emitted one at a time, we can model radioactive decay as a

Poisson process.

26

The Poisson process
More formally: Consider N(t) to be the total number of photons that

have arrived at a detector by time t. We assume that:

1. The number of photons arriving during one time interval does not

affect the number arriving during a different time interval.

2. The mean rate of photon arrival (β) remains constant (The half-life

of the radioactive material is much longer than the time interval

[0, t]).

3. Photons arrive one at a time.

Let ∆Tn;n ≥ 1 be the interval between the arrival of the (n− 1)st and
nth photons. Then

Tn =
n
∑

k=1

∆Tk

is the total amount of time unit n photons have arrived. We can write:

∆Tn = Tn − Tn−1

27

The Poisson process

In order to satisfy assumption (1), the rv ∆Tn must satisfy the “loss of

memory” property. In other words, if we have waited for a time period of

s time units and no photon has arrived, the chance of one arriving

during the next t time units is exactly the same as it would have been if

some photons had arrived while we were waiting. Formally:

P (∆Ti ≥ s+ t |∆Ti ≥ s) = P (∆Ti ≥ t)

“The probability that we will wait more than s+ t time units for photon

to be detected given that we have already waited s time units, is the

same as the probability that a photon will be detected in the next t time

units.”

28

The Poisson process

• General probability theory tells us that:

P (A|B) =
P (A ∩B)

P (B)

• The intersection event can be evaluated as:

P (∆Ti ≥ s+ t |∆Ti ≥ s) = P (∆Ti ≥ s+ t)

giving:

P (∆Ti ≥ s+ t) = P (∆Ti ≥ s)P (∆Ti ≥ t)

• The only real-value funtions for which:

f(t+ s) = f(t) f(s)

are exponentials of the form:

f(t) = ke−βt

• Intuitively, this is because we can cut any real decaying exponential at any

non-negative time point, take the part of the function to the right of the

cut point and be assured that this function will always be another real

decaying exponential function.

29

The Poisson process

• The waiting times between the arrival of photons follow an

exponential distribution. The process in which these times are

distributed in this way is called a Poisson process.

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

Histogram of 15000 exponentially distributed rvs (β = 4)

R
el

at
iv

e
fr

eq
ue

nc
y

(o
)

/ p
ro

ba
bi

lit
y

(−
)

Value of random variable (waiting time)

Normalized histogram of samples
True distribution

The exponential distribution p(t) = β e−βt describes the probability of

waiting a period of t time units for the next photon to arrive.

30

The Poisson process

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

Histogram of 15000 normally distributed rvs (µ = σ = 1/β)

R
el

at
iv

e
fr

eq
ue

nc
y

(o
)

/ p
ro

ba
bi

lit
y

(−
)

Value of random variable

Normalized histogram of samples
True distribution

0 20 40 60 80 100
−5

0

5

10

15

20

25

30

Occurence time of the nth decay (T
n
)

Event number

T
im

e
(m

s)

Exponential distribution
Gaussian distribution

Here, we compare the occurrence time of the nth events for the Poisson

process (with exponentially distributed intervals) to a process that has

intervals sampled from a Gaussian distribution with the same mean and

variance as the exponential distribution. Note how the left tail of the

Gaussian can cause the (n+ 1)st to event occur before the nth event.

31

The Poisson process

Properties of the exponential distribution:

1. Mean = 1
β
. This is the mean waiting time between events in

the Poisson process.

2. Variance = 1
β2 .

β has units of inverse time, and so describes the mean rate of

photon arrival.

32

The Poisson process

• For the Poisson process, the number of events that occur in a

time interval is proportional to the length of the time interval,

and the rate parameter β and nothing else.

• It can be shown that the probability that k photons have

arrived by time t is given by:

P (N(t) = k) = e−βt
(βt)k

k!

• The general Poisson probability mass function (PMF) is

defined as:

P (N = k) = e−λ
(λ)k

k!

Thus, the Poisson process N(t) has a Poisson distribution

with parameter λ = βt.

33

The Poisson process

Properties of the Poisson distribution:

1. The mean of the Poisson distribution is λ.

2. The variance of the Poisson distribution is λ.

3. The sum of independent Poisson random variables is also

Poisson and has mean equal to the sum of the means of its

components.

4. As λ increases, the Poisson distribution becomes a better and

better discrete approximation to the Gaussian distribution

with µ = λ and σ =
√
λ.

34

The Poisson distribution

−1 0 1 2 3
0

0.1

0.2

0.3

0.4
Poisson pmf with λ = 1

k

P
(x

 =
 k

)

−1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Poisson pmf with λ = 2

k

P
(x

 =
 k

)

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25
Poisson pmf with λ = 3

k

P
(x

 =
 k

)

0 5 10 15
0

0.05

0.1

0.15

0.2
Poisson pmf with λ = 5

k

P
(x

 =
 k

)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12
Poisson pmf with λ = 15

k

P
(x

 =
 k

)

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1
Poisson pmf with λ = 20

k

P
(x

 =
 k

)

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08
Poisson pmf with λ = 30

k

P
(x

 =
 k

)

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06
Poisson pmf with λ = 50

k

P
(x

 =
 k

)

0 50 100 150
0

0.01

0.02

0.03

0.04
Poisson pmf with λ = 100

k

P
(x

 =
 k

)

35

The Poisson distribution

−2

0

2

4

6

8

10

12

Image with Gaussian noise

−2

0

2

4

6

8

10

12

Image with Poisson noise

36

The Poisson distribution

−2

0

2

4

6

8

10

Close−up of image with Gaussian noise

−2

0

2

4

6

8

10

Close−up of image with Poisson noise

37

The Poisson distribution

−5 0 5 10 15
0

50

100

150

200
Distribution of gray levels in Gaussian noise image

Gray level
0 5 10 15

0

50

100

150

200
Distribution of gray levels in Poisson noise image

Gray level

38

Maximum likelihood for Poisson distributions

• Recall that the Poisson process is defined by the pmf:

P (N(t) = k) = e−βt
(βt)k

k!

• Imagine that N(t) is the number of photons detected within a
projection bin after a time t. If we take t = T seconds to record a

single projection, our model tells us to expect λ = βt counts to be

detected.

• The probability of recording λij = pij counts in the jth bin of the

ith angular projections during the total imaging period is:

P (λij = pij) = e
−λij λ

pij

pij !

39

Maximum likelihood for Poisson distributions

• As in the Gaussian case, we assume all bins are independent. Thus:

P (λ = p) =

I
∏

i=1

J
∏

j=1

P (λij = pij)

• We now wish to maximize the likelihood that this model λ = Fµ

created the data p.

• To do this, we form the negative log-likelihood function:

`(µ) = −
I
∑

i=1

J
∑

j=1

−λij(µ) + pij ln(λij(µ))− ln(pij !)

where the pij are the projection bin measurements (elements of p)

and the λij are the elements of the Poisson process parameter vector

λ = Fµ.

40

Maximum likelihood for Poisson distributions

• To maximize the likelihood, we minimize the negative log likelihood
by taking its derivatives with respect to the µn and setting these N

equations equal to zero:

d`(µ)

dµn
= −

I
∑

i=1

J
∑

j=1

−dλij(µ)
dµn

+
pij

λij(µ)

dλij(µ)

dµn
= 0 n = 1, 2, . . . , N

• When we maximized the Gaussian likelihood, these equations were
linear in µ. For the Poisson distribution, they are non-linear. We

cannot, in general, find a closed-form solution to this problem (such

as a pseudoinverse).

• We must use iterative methods to find the ML estimate. We must
also ensure that all the µn ≥ 0. This is because a pixel in the image
cannot physically have a negative number of decay events

(mathematically, the Poisson process is not defined for β < 0).

41

Minimization of functions

• The most general techniques for finding the minima of arbitrary
functions are termed methods of optimization.

• Suppose we are given a function f(x) and are told to find the value
of x at which f(x) has its minimum value.

• A naive approach is to evaluate f(x) over all points in space and
choose the point x̂ at which the minimum value occurs.

What are the problems with this approach?

1.

2.

Under what conditions/modifications could this approach be useful?

1.

2.

3.

4.

42

Minimization of functions

Below, we find the approximate minimum of f(x) over the interval [0, 10]

by evaluating the function at 1000 points spaced ∆x = 0.01 apart. The

minimum occurs at x ≈ 5. Note the difference between successive sample
values f(n∆x)− f((n− 1)∆x) = 0 when f(x) has a turning point.

0 2 4 6 8 10
−10

0

10

20

30

40

x

f(
x)

f(x) evaluated at 1000 points over an interval of interest

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

x

f(
x)

Difference between successive values of f (n ∆ x)

On a finite interval and given a chosen grid spacing ∆x, we can find a

solution that is within ∆x of the true global minimum.

43

Minimization of functions

• The exhaustive search we just performed is a method of global
optimization. Global methods are generally applied only to very

difficult optimization problems since their computational cost is

prohibitive for most applications.

• In two or more dimensions f(x) must be evaluated on a grid of
points.

• The higher the dimension of the problem, the larger the set of points
at which f(x) must be evaluated to achieve a solution of a certain

accuracy. This is called sometimes called the Curse of

Dimensionality. In our example, we needed a thousand points to

get within 0.01 of the true solution. In 3D we would need a billion

points.

• Image processing problems usually have a very large number of
parameters (pixels or voxels) and so global optimization methods are

seldom of practical value and are typically used as a last resort.

44

Minimization of functions

• Most optimization algorithms start with an initial guess x[0] of the

solution vector and iteratively refine this guess until a minimizer x̂ is

found.

• The algorithm knows it has found a minimum when, in the process of

taking a step towards a lower value of f(x), it encounters a point at which

the gradient ∇f(x) = 0. Practically, we test ‖∇f(x)‖ < gmin ≈ 0.

• This minimizer x̂ is not necessarily the location of the global minimum

of the function and is termed a local minimum.

• Most local optimization algorithms reduce the value of f(x) at each

iteration by taking a step down the surface of f(x) function. f(x) is often

called the objective function or cost function.

• Usually, the gradient of the f(x) plays an important role in determining

the descent direction along which the algorithm will take its next step.

• The descent direction is described by the unit vector h.

45

Minimization of functions in 1D

We will now attempt to experience the world through the eyes of an

optimization algorithm as it tries to minimize the 1D function f(x) in

the previous example.

1. We are given a “black-box” function f(x) that we can evaluate at

any value of x that we choose.

2. We are given a “black-box” function g(x) = df(x)
dx

that we can

evaluate at any value of x that we choose.

3. We are given an initial guess of the solution x[0] = 7.

We begin by calling the computer function that calculates f(x). It

returns 12.7082. Calling g(x) gives 15.4263. This tells us that f(x)

increases towards the right. To find a minimum, we must set h = −1
to step to the left.

Now we have to “take a step in the dark”. How can we work out how far

left to go? We must decide on a stepping rule.

46

Minimization of functions in 1D

1. We will first try to take a step of arbitrary length β = 3.

2. We will check if we land at a lower value of the function, in other

words whether:

f
(

x[0] + βh
)

< f
(

x[0]
)

. (1)

3. If this is true, we will stay at the new point and set λ = β and

x[1] = x[0] + λh.

We then restart the algorithm with x[1] as our best guess of the

solution x̂ and search for x[2].

4. If our step did not decrease f(x), we divide the current value of β by

two, and try taking a shorter step from x[0].

5. We keep reducing β until we find a value of x[1] that satisfies (1).

Only then can we proceed to Step 3. If f(x) fails to decrease for

β < 0.01 (arbitary choice of a small β), we accept the current value

of x as a local minimum.

47

Minimization of functions in 1D

0 2 4 6 8 10
−10

0

10

20

30

40

x

f(
x)

After optimization step 1: x = 5.250, β used = 1.750

4 4.5 5 5.5 6
−5

−4

−3

−2

−1

0

1

x

f(
x)

After optimization step 2: x = 4.812, β used = 0.438

48

Minimization of functions in 1D

4.8 4.9 5 5.1 5.2
−4.5

−4.45

−4.4

−4.35

−4.3

−4.25

−4.2

−4.15

x

f(
x)

After optimization step 3: x = 5.031, β used = 0.219

4.8 4.9 5 5.1 5.2
−4.5

−4.45

−4.4

−4.35

−4.3

−4.25

−4.2

−4.15

x
f(

x)

After optimization step 4: x = 4.977, β used = 0.055

After 4 iterations, our simple algorithm finds the minimum of the

function as x̂ = 4.977. This is close to the true solution of x = 5.

49

Minimization of functions of arbitrary dimension

• In 1D, an optimization algorithm can choose from only two directions

along which to take a step.

• In 2+D, the algorithm must choose a single direction from among an

infinite number of directions.

• The simplest (and greediest) choice is to follow the negative of the

gradient of the function towards a local minimum. The algorithm based

on this concept is called the method of steepest descent (SD).

• In this course, we study only the SD algorithm, even though algorithms

with far more desirable properties exist and are typically used instead of

SD in practice.

• Studying SD, however, gives us great insight into local optimization

methods, because most algorithms have the same basic recipe:

1. Pick a direction based on the gradient and/or second derivative of

f(x).

2. Search along this direction for a point at which f(x) is decreased.

3. Update the current value of x and try to minimize f(x) further.

50

Minimization of functions in 2D

Consider the function:

f(x) = f(x1, x2) = 3(1− x1)
2 e−x

2
1−(x2+1)2

−10 (x1/5− x3
1 − x5

2) e
−x2

1−x
2
2

−1/3 e−(x1+1)2−x2
2

−6

−4

−2

0

2

4

6

8

−2

0

2

−2

0

2
−10

−5

0

5

10

x
1

f(x)

x
2

51

Minimization of functions of any dimension

By inspection, we see that this function is non-linear and probably does

not have a closed-form solution for the minimizer x̂. How can we

minimize this 2D function using a local optimization algorithm?

We are given the starting point x[0] = [−1.2 − 1.5]T .

The following recipe allows us the minimize functions of any

dimension:

Let x[k] represent the current iterate:

1. Calculate f(x[k]) and g(x[k]) = ∇f(x[k]). In general:

∇f(x) =

















∂f
∂x1

∂f
∂x2

...

∂f
∂xn

















52

Minimization of functions of any dimension

2. Check to see if the norm of the gradient ‖∇f(x)‖ is smaller than a
lower threshold gmin that we have set. If so, and if the last step was

a descent, we are satisfactorily close to a local minimum and can

exit the algorithm.

3. Choose a descent direction h. In the SD method, we choose

h = −∇f(x).

4. Sample the function in the direction of h to search for a point for

which:

f
(

x[k] + βh
)

< f
(

x[k]
)

5. If we can find such a point, set λ = β and

x[k + 1] = x[k] + λh

6. If we can’t find such a point, we must be at a solution and must

return it to the user. Otherwise, we set k = k+ 1 and return to Step

1.

53

Minimization of functions of any dimension
It is important to note that the search in the direction of h in Step 4 is

the same as the 1D search we performed when we minimized the 1D

function earlier. Consequently, multidimensional optimization may be

viewed as succesive 1D optimizations along specially chosen

direction vectors. To ensure convergence, we need only ensure that

the value of f(x) decreases at every step.

We now return to the 2D example. Before we can apply the method of

SD, we must derive expressions for the gradient:

∂f(x)

∂x1
= −6(1− x1) e

−x2
1−(x2+1)

2

+

3(1− x1)
2 e−x

2
1−(x2+1)

2

(−2x1)−
10 ((1/5− 3x21) e−x

2
1−y

2

+

(x1/5− x31 − x52) e
−x2

1−x
2
2 (−2x1))−

1/3 e−(x1+1)
2−x2

2(−2(x1 + 1))

54

Minimization of functions of any dimension

∂f(x)

∂x2
= 3(1− x1)

2 e−x1.
2−(x2+1)

2

(−2(x2 + 1))−

10 ((−5x42) e−x
2
1−x

2
2 +

(x1/5− x1.
3 − x2.

5) e−x
2
1−x

2
2 (−2x2))−

1/3 e−(x1+1)
2−x2

2(−2x2)

We then set h = g(x) and perform the line search.

55

Minimization of functions in 2D

−6

−4

−2

0

2

4

6

8

−2
0

2

−2
0

2

−10

−5

0

5

10

x
1

f(x)

x
2

Surface normals are plotted that have length equal to those of the respective

gradient vectors. Note how these vectors are long on the steep slopes and short at

the turning points.

56

Minimization of functions in 2D

−6

−4

−2

0

2

4

6

−2 −1 0 1 2
−2

−1

0

1

2

x
1

x 2

f(x)

Here, a set of gradient vectors has been plotted over a contour plot of the

objective function.

57

Minimization of functions in 2D

−2

0

2

−2

0

2
−10

−5

0

5

10

x
1

After optimization step 1: x = [−1.11 −1.92]T

x
2

Previous iterate
New iterate

−2

0

2

−2

0

2
−10

−5

0

5

10

x
1

After optimization step 2: x = [−0.71 −1.99]T

x
2

Here, we show the progress of the optimization algorithm. The SD

method used utilizes the same crude line search we employed for the 1D

example. In this 2D example, β0 = 0.2, βmin = 0.035 and gmin = 0.75.

58

Minimization of functions in 2D

−2

0

2

−2

0

2
−10

−5

0

5

10

x
1

After optimization step 3: x = [0.18 −1.70]T

x
2

−2

0

2

−2

0

2
−10

−5

0

5

10

x
1

After optimization step 4: x = [0.21 −1.61]T

x
2

59

Minimization of functions in 2D

• Our algorithm finds a satisfactory solution after only four iterations.

• However, the initial value of the parameter β must be carefully adjusted to

suit the scale of each problem otherwise convergence will be very slow.

• A simple, computationally cheap, and effective step rule is the Armijo

line search. This algorithm produces a step size λ = βk, k ∈ Z that

satisfies:

f
(

x[k] + βkh
)

− f(x[k]) ≤ βkα∇f(x[k])Th

and

f
(

x[k] + βk−1h
)

− f(x[k]) > βk−1α∇f(x[k])Th

This search is much less sensitive to the values of its parameters α ∈ (0, 1)

and β ∈ (0, 1) than our crude line search. α and β control the speed of

convergence to the solution. The Armijo method modifies β far more

efficiently than our crude method, which simply divides β by two until a

decrease in f(x) was achieved. The Armijo method adjusts the step length

by raising β to a positive or negative exponent. Thus, steps can grow or

shrink. The Armijo method also checks to see that the decrease in the

function is sufficient to ensure convergence.

60

Minimization of functions in 2D

Graphical interpretation of the Armijo line search (from Polak (1997)

p.30):

λ′i and λi are both step lengths that satisfy the criteria of the

Armijo rule. Whether the former or latter are chosen depends on

the values of the parameters α and β. Note that:

〈∇f(x),h〉 ≡ ∇f(x)Th.

61

Minimization of functions in 2D

• In the SD algorithm, we have h = g(x), so the Armijo criteria

become:

f
(

x[k] + βkh
)

− f(x[k]) ≤ βkα ‖∇f(x[k])‖2

and

f
(

x[k] + βk−1h
)

− f(x[k]) > βk−1α ‖∇f(x[k])‖2

• We see that, for a step to be acceptable, the decrease in the cost
function must exceed some fraction of the length of the gradient

vector. This helps protect the algorithm from “getting stuck” as a

result of numerical errors present in the gradient and cost function

values. These errors are unavoidable in a computer implementation.

62

Matlab code for an SD algorithm with Armijo line search

function [x, f, g, n, xi, fi] = sdarmijo(x0, alpha, beta, n, ...

funcName)

% x0: inital solution estimate

% alpha: convergence parameter

% beta: step size parameter

% n: max. iterations

% funcName: name of user function

% Function must return [f,g] - cost scalar and

% gradient vector

% returns:

% f: final function value

% g: final gradient value

% n: iterations performed

% for postrun progress analysis:

63

% xi: collection of x vectors

% indexed by iteration

% fi: vector of cost function

% values indexed by iteration

x = x0(:); % make sure x is a column vector

xi{1} = x; % store starting vector in history

k=0;

kMax = 20; % maximum power of beta (smallest

% possible step

kMin = -50; % largest power of beta (largest

% possible step

for i = 1:n

[f, g] = feval(funcName, x); % evaluate cost

% function and gradient

fi(i) = f; % record history of cost

h = -g; % set search direction to steepest descent direction

64

% Armijo search loops

if feval(funcName, x + beta^k*h) - f > beta^k*alpha*g.’*h

while feval(funcName, x + beta^k*h) - f > ...

beta^k*alpha*g.’*h

k=k+1; % take smaller step because current step

% increases function value

if k > kMax

break % step is very small, we must be done

end %if

end %while

else

while feval(funcName, x + beta^k*h) - f <= ...

beta^k*alpha*g.’*h

k=k-1; % take bigger step because we have reduced the

% function value, but might do better

% with a larger step

if k < kMin

65

break % step is getting too large

end %if

end %while

k=k+1;

end %if

% update solution

x = x + beta^k*h;

% update history

xi{i+1} = x;

end %for

% update cost function history and

% find final gradient vector

[fi(i+1), g] = feval(funcName, x);

66

Matlab code for demo 2D cost function to be minimized

function [f,g] = peaksfn(X,Y)

% prepares "peaks" function for 2D optimization demo

% allow function to be called with a vector argument [x y].’

if nargin == 1

Y = X(2);

X = X(1);

end

% cost function

f = 3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2) ...

- 10*(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2) ...

- 1/3*exp(-(X+1).^2 - Y.^2) ;

% partial with respect to x1

gx = -6*(1-X).*exp(-(X.^2)-(Y+1).^2) + 3*(1-X).^2 .* ...

67

exp(-(X.^2) - (Y+1).^2).*(-2*X) - 10 * ...

((1/5 - 3*X.^2).*exp(-X.^2-Y.^2) + ...

(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2).*(-2*X)) - 1/3 * ...

exp(-(X+1).^2 - Y.^2).*(-2*(X+1));

% partial with respect to x2

gy = 3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2).*(-2*(Y+1)) - 10 * ...

((- 5*Y.^4).*exp(-X.^2-Y.^2) + ...

(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2).*(-2*Y)) - 1/3 * ...

exp(-(X+1).^2 - Y.^2).*(- 2*Y);

g = [gx; gy];

68

Matlab code for invoking optimization algorithm

>> [x,f,g, n, xi, fi] = sdarmijo([-1.2 -1.5], 0.5, 0.5, ...

10, ’peaksfn’);

fi =

Columns 1 through 7

0.3776 -0.3786 -2.8445 -6.3106 -6.5447 -6.5499 -6.5509

Columns 8 through 11

-6.5511 -6.5511 -6.5511 -6.5511

>> [xi{1:10}]

ans =

Columns 1 through 7

-1.2000 -1.0917 0.8894 0.2435 0.2522 0.2392 0.2331

69

-1.5000 -2.0238 -1.9354 -1.4963 -1.6138 -1.6216 -1.6239

Columns 8 through 10

0.2304 0.2292 0.2287

-1.6248 -1.6252 -1.6254

>> norm(g)

ans =

0.0034

70

